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The matrix representation of Cartan's structural equations of the geometry of absolute
parallelism indicates that, in fact, this space behaves as a manifold, on which the translations
group T4 and the rotations group O(3.1) are speci�ed. We will consider A4 geometry as a
group 10-dimensional manifold formed by four translational coordinates xi (i = 0, 1, 2, 3) and
six (by the relationship ea

ie
j
a = δi

j) angular coordinates ea
i (a = 0, 1, 2, 3). Suppose that on

this manifold a group of four-dimensional translations T4 and a rotations group O(3.1) are
de�ned. We then introduce the Hayashi invariant derivative [1]

∇b = ek
b∂k, (1)

whose components are generators of the translations group T4 that is speci�ed on the manifold
of translational coordinates xi. If then we represent as a sum

ek
b = δk

b + ak
b, (2)

i, j, k . . . = 0, 1, 2, 3, a, b, c, . . . = 0, 1, 2, 3,

then the �eld ak
b can be viewed as the potential of the gauge �eld of the translations group

T4 [1]. In the case where ak
b = 0, the generators (1) coincide with the generators of the

translations group of the pseudo-Euclidean space E4 .
We know already that in the coordinate index k the nonholonomic tetrad ek

a transforms
as the vector

ek′
a =

∂xk′

∂xk
ek

a,

whence, by (2), we have the law of transformation for the �eld ak
a relative to the translationss

ak′
b =

∂xk′

∂xn
an

b +
∂xk′

∂xn
δn

b − δk′
b. (3)

We de�ne the tetrad ei
a as

ei
a = ∇ax

i (4)
and write the commutational relationships for the generators (1) as

∇[a∇b] = −Ω..c
ab∇c, (5)

where −Ω..c
ab are the structural functions for the translations group of the spaceA4. If then we

apply the operator (5) to the manifold xi, we will arrive at the structural equations of the
group T4 of the space A4 as

∇[a∇b]x
i = −Ω..c

ab∇cx
i (6)
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or
∇[ae

i
b] = −Ω..c

abe
i
c. (7)

In this relationship the structural functions −Ω..c
ab are de�ned as

−Ω..c
ab = ec

i∇[ae
i
b]. (8)

It is seen from this equality that when the potentials of the gauge �eld of translations group
ak

b in the relationship (2) vanish, so do the structural functions (8). Therefore, we will refer
to the �eld Ω..c

ab as the gauge �eld of the translations group.
Considering that T c

[ab] = −Ω..c
ab, we will rewrite the structural equations (8) as

∇[ke
a
m] − eb

[kT
a
|b|m] = 0. (9)

What is more, they coincide with the structural Cartan equations (A) of the geometry of
absolute parallelism.

The structural equations of group T4, written as (8), can be regarded as a de�nition for
the torsion of space A4. So the torsion of space A4 coincides with the structural function of
the translations group of this space, such that the structural functions obey the generalized
Jacobi identity

∗
∇[b Ω..a

cd] + 2Ω..f
[bcΩ

..a
d]f = 0, (10)

where
∗
∇b is the covariant derivative with respect to the connection of absolute parallelism

∆a
bc. The Jacobi identity (10), which is obeyed by the structural functions of the translations

group of geometry A4, coincides with the �rst Bianchi identity of the geometry of absolute
parallelism .

The vectors
ei

a = ∇ax
i, (11)

that form the vector strati�cation [1] of the A4 geometry, point along the tangents to each
point of the manifold xi of the pseudo-Euclidean plane with the metric tensor

ηab = ηab = diag(1, −1, −1, −1). (12)

Therefore, the ten-dimensional manifold (four translational coordinates xi and six "ro-
tational" coordinates ei

a) of the geometry of absolute parallelism can be regarded as the
strati�cation with the coordinates of the base xi and the (anholonomic) "coordinates" of the
�bre ei

c. If on the base xi we have the translations group T4, then in the �bre ei
c we have the

rotation group O(3.1). It follows from (11) that the in�nitesimal translations in the base xi

in the direction a are given by the vector

dsa = ea
idxi. (13)

If from (13) and the covariant vector dsa = ei
adxi we form the invariant convolution ds2,

we will obtain the Riemannian metric of A4 space

ds2 = gikdxidxk (14)

with the metric tensor
gik = ηabe

a
ie

b
k.
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Therefore, the Riemannian metric (14) can be viewed as the metric de�ned on the trans-
lations group T4.

Since in the �bre we have the "angular coordinates" ei
a that form a manifold in which

group O(3.1) is de�ned, then it would be natural to de�ne the structural equations for this
group, as well as the metric speci�ed on the group O(3.1).

Let us rewrite the Ricci rotational coe�cients T i
jk in matrix form

T a
bk = ea

iT
i
jke

j
b = ∇ke

a
je

j
b, (15)

T a
bk = ea

iT
i
jke

j
b = −ea

i∇ke
i
b. (16)

These relationships enable the dependence between the in�nitesimal rotation dχab = −dχba

of the vector ea
i at in�nitesimal translations dsa to be established. In fact, by (15) and (16),

we have
dχa

b = T a
bkdxk = Dea

je
j
b, (17)

dχa
b = T a

bkdxk = −ea
iDei

b. (18)
where D is the absolute di�erential with respect to the Christo�el symbols Γi

jk. Using (17), we
can form the invariant quadratic form dτ 2 = dχa

bdχb
a to arrive at the Killing-Cartan metric

dτ 2 = dχa
bdχb

a = T a
bkT

b
andxkdxn = −Dea

iDei
a (19)

with the metric tensor
Hkn = T a

bkT
b
an. (20)

Unlike metric (14), the metric (19) is speci�ed on the rotations group O(3.1) that acts on
the manifold of the "rotational coordinates" ea

i.
Let us now introduce the covariant derivative

∗
∇m= ∇m + Tm, (21)

where Tm is the matrix T a
bm with discarded matrix indices. We will regard the components

of the derivative as generators of the rotations group O(3.1). Applying this operator to the
tetrad ei that forms the manifold of "angular coordinates" of the A4 geometry, we will arrive
at ∗

∇m ei = ∇mei + Tmei = 0, (22)
hence

Tm = −ei∇mei. (23)
It is interesting to note that, just as in (11) we have de�ned six "angular coordinates" ei

a

through the four translational coordinates xi, so in (5.121) we can de�ne 24 "supercoordinates"
T a

bm through the six coordinates ei
a.

It follows from (22) that
∇mei = −Tmei. (24)

Recall that in the relationships (22)-(24) we have de�ned through ∇m the covariant deriv-
ative with respect to Γi

jk. We will now take the covariant derivative ∇k of the relationships
(24)

∇k∇mei = −∇k(Tmei) = −(∇kTmei + Tm∇ke
i) =

= −(∇kTmei + Tmeiei∇ke
i).
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Using (23), we will rewrite this expression as follows

∇k∇mei = −(∇kTm − TmTk)e
i.

Alternating this expression in the indices k and m gives

∇[k∇m]e
i =

1

2
Rkmei, (25)

where
Rkm = 2∇[mTk] + [Tm, Tk]. (26)

Introducing in equations (26) the matrix indices (the �bre indices), we will obtain the
structural equation of the group O(3.1)

Ra
bkm = 2∇[mT a

|b|k] + 2T a
c[mT c

|b|k]. (B)

It is easily seen that the structural equations of the rotations group (B) coincide with the
second of Cartan's structural equations (26) of the geometry A4.

In this case the quantities T a
bk and Ra

bkm vary in the rotations group O(3.1) following the
law

T a′
b′k = Λ a′

a T a
bkΛ

b
b′ + Λ a′

a Λa
b′,k, (27)

and appear as the potentials of the gauge �eld Ra
bkm of the rotations group O(3.1). In the

process, the gauge �eld of the group O(3.1) obeys the formula

Ra′
b′km = Λ a′

a Ra
bkmΛb

b′ . (28)

Note that the structural functions of the rotations group of A4 geometry are the compo-
nents of the curvature tensor Ra

bkm. It can be shown that the structural functions Ra
bkm of

the rotations group O(3.1) satisfy the Jacobi identity

∇[nRa
|b|km] + Rc

b[kmT a
|c|n] − T c

b[nRa
|c|km] = 0, (D)

which, at it was shown in the previous section, are at the same time the second Bianchi
identities of the A4 space.

Let us introduce the dual Riemann tensor
∗
Rijkm=

1

2
εsp

kmRijsp, (29)

where εsp
km is the completely skew-symmetrical Levi-Chivita tensor. Then the equations (D)

can be written as
∇n

∗
R

a
b
kn+

∗
R

c
b
knT a

cn − T c
bn

∗
R

a
c
kn = 0 (30)

or, if we drop the matrix indices, as

∇n

∗
R

kn+
∗
R

knTn − Tn

∗
R

kn = 0. (31)
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